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predicting clinical decline and 
conversion to Alzheimer’s disease 
or dementia using novel elecsys 
Aβ(1–42), pTau and tTau CSF 
immunoassays
Kaj Blennow1,2,10, Leslie M. Shaw3,10, Erik Stomrud4,5, Niklas Mattsson4,6, Jon B. toledo3,7, 
Katharina Buck8, Simone Wahl8, Udo eichenlaub8, Valeria Lifke8, Maryline Simon9, 
John Q. trojanowski  3 & Oskar Hansson4,5*

We evaluated the performance of CSF biomarkers for predicting risk of clinical decline and conversion 
to dementia in non-demented patients with cognitive symptoms. CSF samples from patients in two 
multicentre longitudinal studies (ADNI, n = 619; BioFINDER, n = 431) were analysed. Aβ(1–42), tTau 
and pTau CSF concentrations were measured using Elecsys CSF immunoassays, and tTau/Aβ(1–42) 
and pTau/Aβ(1–42) ratios calculated. Patients were classified as biomarker (BM)-positive or BM-
negative at baseline. Ability of biomarkers to predict risk of clinical decline and conversion to AD/
dementia was assessed using pre-established cut-offs for Aβ(1–42) and ratios; tTau and pTau cut-offs 
were determined. BM-positive patients showed greater clinical decline than BM-negative patients, 
demonstrated by greater decreases in MMSE scores (all biomarkers: –2.10 to –0.70). Risk of conversion 
to AD/dementia was higher in BM-positive patients (HR: 1.67 to 11.48). Performance of Tau/Aβ(1–42) 
ratios was superior to single biomarkers, and consistent even when using cut-offs derived in a different 
cohort. Optimal pTau and tTau cut-offs were approximately 27 pg/mL and 300 pg/mL in both BioFINDER 
and ADNI. Elecsys pTau/Aβ(1–42) and tTau/Aβ(1–42) are robust biomarkers for predicting risk of clinical 
decline and conversion to dementia in non-demented patients, and may support AD diagnosis in clinical 
practice.

Pathological processes underlying Alzheimer’s disease (AD) begin during a preclinical phase, often years before 
clinical symptoms associated with early stage disease1. Early diagnosis of AD and identification of disease 
progression are important for planning patient treatment and care. However, diagnosis at the mild cognitive 
impairment (MCI) stage, a known risk factor for progression, is challenging as: MCI does not always progress 
to dementia; dementia may be due to other causes; rates of progression vary; identifying individual conversion 
points is difficult2,3.

Amyloid (positron emission tomography [PET]) scanning is a Food and Drug Administration 
(FDA)-approved biomarker for supporting AD diagnosis4, with MCI patients showing evidence of amyloid 
pathology having a higher risk of clinical decline5–7. However, many amyloid-PET-positive patients remain cog-
nitively normal for several years, highlighting the need for more robust biomarkers8,9. Recent efforts have focused 
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on cerebrospinal fluid (CSF) biomarkers, and several studies have demonstrated the potential value of Aβ(1–42), 
phosphorylated Tau (181 P; pTau) and total Tau (tTau) biomarkers in MCI patients9–15.

Elecsys CSF immunoassays have been developed for measurement of Aβ(1–42), pTau and tTau, and have 
demonstrated excellent analytical performance, with high precision, good lot-to-lot comparability and low vari-
ability between and within laboratories16–20. Clinical evaluation in Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) and BioFINDER studies also showed good concordance between measured CSF Aβ(1–42), ratios tTau/
Aβ(1–42) and pTau/Aβ(1–42) and visual read outcomes of amyloid-PET17. We compare the performance of 
Aβ(1–42), pTau, tTau and ratios pTau/Aβ(1–42) and tTau/Aβ(1–42) for predicting the risk of clinical decline and 
conversion to AD or dementia in non-demented patients with cognitive symptoms.

Methods
Study populations. Individuals with MCI from ADNI and mild cognitive symptoms (MCS) from 
BioFINDER were included in the retrospective analyses, based on the following criteria: availability of a baseline 
Mini-Mental State Examination (MMSE) score; a baseline CSF sample; and a valid baseline measurement of the 
Elecsys biomarkers Aβ(1–42), pTau and tTau.

ADNI. ADNI is an ongoing, longitudinal, multicentre study of volunteers with MCI or early AD, as well as 
cognitively normal healthy individuals enrolled at over 50 clinical centres, which started in 2004. Definitions of 
the participant classifications are presented below.

Normal cognition: MMSE scores between 24 and 30 (inclusive), a Clinical Dementia Rating (CDR) of 0, 
non-depressed, non-MCI and non-demented.

MCI: MMSE scores between 24 and 30 (inclusive), a memory complaint, have objective memory loss meas-
ured by education-adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of 
significant levels of impairment in other cognitive domains, essentially preserved activities of daily living and an 
absence of dementia.

Mild AD: MMSE scores between 20 and 26 (inclusive), CDR of 0.5 or 1.0 and meets National Institute of 
Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders 
Association (NINCDS-ADRDA) criteria for probable AD.

Participants undergo annual examinations including magnetic resonance imaging (MRI) and amyloid-PET 
imaging, plasma and CSF sampling, as well as clinical and neuropsychological assessments. Further details are 
available at adni-info.org.

Overall, 619 of the total 872 patients (253 omitted due to missing baseline measurements) from the ADNI 
MCI population were included; 277 had early-MCI (criteria included memory function approximately 1.0 stand-
ard deviation [SD] below expected education-adjusted norms) and 342 had late-MCI (criteria included memory 
function approximately 1.5 SDs below expectation)21.

BioFINDER. The control participants in BioFINDER were recruited from the population-based Malmö Diet 
Cancer Study22, and inclusion criteria were: aged > 60 years, MMSE score 28–30 at the screening visit, no cogni-
tive symptoms and absence of MCI or dementia. Exclusion criteria were: presence of significant neurological or 
psychiatric disease, refusing lumbar puncture or MRI and significant alcohol or substance misuse. Subjects with 
MCS (i.e. either subjective cognitive decline [SCD] or MCI) were recruited consecutively at three memory clinics 
in southern Sweden. Inclusion criteria were: referral to the memory clinic due to cognitive symptoms experienced 
by the patient and/or an informant, criteria of any dementia disorder not fulfilled, MMSE score 24–30 and age 
60–80 years. Exclusion criteria were: cognitive impairment that without doubt could be explained by a condition 
other than prodromal dementia, refusing lumbar puncture or neuropsychological investigation and current alco-
hol or substance misuse. The classification of MCS into SCD or MCI was based on a neuropsychological battery 
and the clinical assessment of a senior neuropsychologist as previously described23. AD diagnosis was confirmed 
by clinical evaluation and was based on the Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition 
Revised (DSM-IIIR) criteria for dementia24 combined with the NINCDS-ADRDA criteria for AD25. Participants 
underwent bi-annual examinations including MRI, CSF and plasma sampling, and detailed clinical and neu-
ropsychological assessments. Further details, including eligibility criteria, are available at BioFINDER.se. A total 
of 431 MCS patients from the BioFINDER population were included in the present analyses, and were classified 
into subgroups based on neuropsychological assessment: MCI (n = 233, including 172 patients with amnestic 
MCI), SCD (n = 191) or unknown SCD/MCI status (n = 7).

Ethical approval and informed consent. The final version of the protocol was approved by the 
Copernicus Group Independent Review Board and Regional Ethics Review Board in Lund. All procedures per-
formed in studies involving human participants were in accordance with the ethical standards of the institutional 
and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or compa-
rable ethical standards. Written informed consent was obtained from all patients who participated in ADNI and 
BioFINDER.

Biomarker measurements. CSF concentrations of Aβ(1–42), pTau and tTau were measured using Elecsys 
CSF immunoassays on a cobas e 601 analyser at the University of Pennsylvania (ADNI) and the University of 
Gothenburg (BioFINDER).

Pre-specified cut-offs for CSF Aβ(1–42), pTau/Aβ(1–42) and tTau/Aβ(1–42). Based on BioFINDER 
data, cut-off values for Aβ(1–42), pTau/Aβ(1–42) and tTau/Aβ(1–42) have previously been determined for con-
cordance between CSF biomarkers and visual read of amyloid-PET images17. The previously derived cut-off val-
ues were: Aβ(1–42), 1,100 pg/mL; pTau/Aβ(1–42), 0.022; tTau/Aβ(1–42), 0.26. Similarly, for ADNI, the cut-offs 

https://doi.org/10.1038/s41598-019-54204-z


3Scientific RepoRtS |         (2019) 9:19024  | https://doi.org/10.1038/s41598-019-54204-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

optimised for concordance of CSF biomarkers with amyloid-PET visual read were: Aβ(1–42), 977 pg/mL; pTau/
Aβ(1–42), 0.025; tTau/Aβ(1–42), 0.2717. As a sensitivity analysis, ADNI analyses were also performed using 
cut-offs derived from BioFINDER and adjusted for pre-analytical handling in ADNI: Aβ(1–42), 880 pg/mL; 
pTau/Aβ(1–42), 0.028; tTau/Aβ(1–42), 0.33, as previously described17.

Statistical analyses. Analyses were conducted using SAS version 9.4 and R version 3.4.0.

Derivation of cut-offs for CSF pTau and tTau. To derive cut-offs for the assessment of clinical decline 
by single tau biomarkers (pTau and tTau), progression analyses were performed across a grid of cut-offs (in 2.5% 
steps) in ADNI. Based on findings for different models (as specified below), and outcomes evaluated across the 
grid, cut-offs were derived using visual assessment that provided a good separation between MCI patients with 
a higher versus lower risk of clinical decline. The ability of biomarker status (based on the selected cut-offs) to 
predict risk of clinical decline was evaluated in the BioFINDER population.

As a sensitivity analysis, cut-offs were derived based on concordance (Youden-index optimisation) with the 
outcome AD versus cognitively normal controls in both studies.

Mixed-effects modeling. Based on biomarker status (as specified by the cut-offs), CSF samples were clas-
sified as biomarker-positive (BM-positive) or biomarker-negative (BM-negative). MMSE scores from visits at 
baseline, 12 and 24 months for BioFINDER and from visits at baseline, 6, 12 and 24 months for ADNI were eval-
uated as the main outcome measure. Clinical Dementia Rating Scale Sum of Boxes (CDR-SB; ADNI), Functional 
Activities Questionnaire (FAQ; ADNI and BioFINDER) and Alzheimer’s Disease Assessment Scale-cognitive 
(ADAS-cog; ADNI) were also evaluated as outcome measures.

Prediction of change in clinical score based on biomarker status was analysed using linear mixed-effects 
regression models, including random effects (random intercepts) for the patient and fixed effects for biomarker 
test result at baseline (BM-negative and BM-positive), visit (categorical), baseline clinical score (continuous), 
interaction between visit and baseline clinical score, interaction between visit and biomarker test result and the 
adjustment covariates age, sex and years of education (with [data not shown] and without adjustment for APOEε4 
allele status). The model was fitted using restricted maximum likelihood estimation and the Satterthwaite approx-
imation for the degrees of freedom. The model was used to evaluate the following three effects: change in clinical 
score from baseline to 24 months in BM-negative patients; change in clinical score from baseline to 24 months 
in BM-positive patients; difference in clinical scores from baseline to 24 months between BM-positive and 
BM-negative patients.

Time-to-event modeling. Time-to-event analyses were performed for the outcome time-to-dementia diag-
nosis in the ADNI MCI and BioFINDER MCS populations (6 years' follow-up). In the BioFINDER MCS popula-
tion, time to AD diagnosis was also assessed; this was not assessed in ADNI, as most subjects progressed to AD. 
Cox proportional hazards models were fitted with covariate biomarker status (BM-negative and BM-positive) 
adjusted for age, sex, years of education, baseline MMSE and baseline CDR-SB (ADNI). Hazard ratio (HR) esti-
mates with 95% confidence intervals (CIs) were obtained and Kaplan-Meier curves estimated according to bio-
marker status.

Multi-marker modeling. Mixed-effects and time-to-event analyses were performed to evaluate the con-
tribution of tau, in addition to amyloid biomarkers, to the prediction of risk of clinical decline and conversion 
to dementia, when tau was combined with markers of amyloid pathology: Aβ(1–42), Tau/Aβ(1–42) ratios or 
amyloid-PET. The evaluation was performed using linear mixed-effects and Cox proportional hazards models 
as described above, and four-categorical variables were defined as: amyloid + |Tau + , amyloid –|Tau + , amy-
loid + |Tau –, amyloid –|Tau –. Likelihood ratio tests (LRTs) were used to assess the contribution of tau in the 
models.

Results
Study populations. Baseline characteristics for ADNI (MCI) and BioFINDER (MCS) populations are 
presented in Table 1. Age, baseline MMSE and APOEε4 genotype were broadly similar between the ADNI and 
BioFINDER populations, but key differences included lower measured baseline Aβ(1–42) concentrations (962 ver-
sus 1,142 pg/mL) and baseline FAQ score (3.06 versus 5.67), and higher proportion of patients with a first-degree 
family history of dementia (57% versus 41%).

Derivation of cut-offs for CSF pTau and tTau. Patient classification as BM-positive versus BM-negative 
using single tau biomarker cut-offs of 27 pg/mL (pTau) and 300 pg/mL (tTau) provided good separation between 
patients with higher versus lower risk of clinical decline, and these values were therefore selected for evaluation. 
The selected cut-offs showed robust separation of BM-positive and BM-negative patients when clinical decline 
was based on change in the clinical scores MMSE, CDR-SB (ADNI only), ADAS-cog (ADNI only) and FAQ, or 
dementia diagnosis in ADNI (Supplementary Figs. S1–S3).

In a sensitivity analysis, single tau cut-offs were optimised for identification of AD patients versus normal 
controls in the BioFINDER and ADNI populations. Cut-offs identified were 28 pg/mL (pTau) and 307 pg/mL 
(tTau) in BioFINDER, and 24 pg/mL (pTau) and 266 pg/mL (tTau) in ADNI. Derived cut-offs for each study were 
similar and demonstrated a similar performance to the original cut-offs of 27 pg/mL (pTau) and 300 pg/mL (tTau) 
in both study populations, thus confirming the robustness of the chosen cut-offs (Supplementary Figs. S1–S3).

CSF biomarkers as predictors of clinical decline. MMSE scores for BM-negative patients remained 
stable from baseline to 24 months, with a mean change of –1.20 to –0.04 across all five biomarkers in the ADNI 
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and BioFINDER populations (Table 2). In contrast, MMSE scores for BM-positive patients decreased steadily, 
with a mean change of –2.31 to –1.90, indicating that cognitive decline was greater among BM-positive compared 
with BM-negative patients. This trend was evident in both ADNI and BioFINDER populations and for all five 
biomarkers (Table 2; Fig. 1); however, amongst BM-negative patients, mean changes in MMSE score were slightly 
lower in ADNI (–0.68 to –0.04) compared with BioFINDER (–1.20 to –0.74).

The difference in change in MMSE score between BM-negative and BM-positive patients ranged from –2.10 
to –0.70 across all five biomarkers in both populations, with upper 95% confidence limits of < 0. The difference 
between BM-positive and BM-negative patients was a little more pronounced in ADNI (–2.10 to –1.40) than in 
BioFINDER (1.57 to –0.70) (Table 2; Fig. 1); the smaller between-group difference in BioFINDER reflects the 

Characteristic

ADNI BioFINDER

Overall
(N = 619)

EMCI
(n = 277)

LMCI
(n = 342)

Overall
(N = 431)

SCD
(n = 191)

MCI
(n = 233)

Cohort, N (%)

ADNI1 187 (30.21) 0 187 (54.68) — — —

ADNIGO 117 (18.90) 117 (42.24) 0 — — —

ADNI2 315 (50.89) 160 (57.76) 155 (45.32) — — —

Age [years], mean (SD) 72 (7.6) 71 (7.4) 73 (7.6) 70 (5.6) 70 (5.7) 71 (5.5)

Sex, male, N (%) 364 (58.80) 155 (55.96) 209 (61.11) 233 (54.06) 89 (46.60) 142 (60.94)

APOEε4 genotype grouped (number of risk alleles), N (%)

0 314 (50.73) 160 (57.76) 154 (45.03) 234 (54.55) 114 (60.32) 116 (49.79)

1 239 (38.61) 97 (35.02) 142 (41.52) 151 (35.20) 62 (32.80) 86 (36.91)

2 66 (10.66) 20 (7.22) 46 (13.45) 44 (10.26) 13 (6.88) 31 (13.30)

Education [years], mean (SD) 16.09 (2.76) 15.95 (2.65) 16.20 (2.83) 11.8 (3.48) 12.5 (3.56) 11.2 (3.28)

Family history of dementia (first degree), N (%)
Yes 353 (57.03) 167 (60.29) 186 (54.39) 169 (40.92) 79 (42.70) 89 (40.09)

No 260 (42.00) 106 (38.27) 154 (45.03) 244 (59.08) 106 (57.30) 133 (59.91)

Family history of AD (first degree), N (%)
Yes 214 (34.57) 108 (38.99) 106 (30.99) — — —

No 138 (22.29) 25 (9.03) 113 (33.04) — — —

Baseline clinical score, mean (SD)

CDR-SB 1.48 (0.89) 1.29 (0.77) 1.64 (0.94) — — —

MMSE 27.74 (1.81) 28.35 (1.58) 27.24 (1.83) 27.7 (1.81) 28.5 (1.40) 27.1 (1.84)

FAQ 3.06 (4.02) 2.10 (3.20) 3.83 (4.43) 5.67 (5.04) 3.90 (4.39) 6.93 (4.99)

ADAS-cog 16.11 (6.91) 12.70 (5.39) 18.87 (6.77) — — —

Baseline biomarker measurement, mean (SD; pg/mL)

Aβ(1–42) 962.0 (437.0) 1,093 (438.9) 855.7 (406.1) 1,142 (450.5) 1,272 (431.9) 1,038 (439.5)

pTau 27.83 (15.01) 24.25 (13.69) 30.72 (15.42) 23.61 (12.79) 21.62 (11.24) 24.94 (13.55)

tTau 287.0 (134.6) 256.4 (121.7) 311.8 (139.5) 262.9 (119.2) 242.6 (101.9) 276.8 (127.9)

Table 1. Baseline characteristics for the ADNI MCI and the BioFINDER MCS populations and subcohorts. 
ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive impairment; MCS, mild cognitive 
symptoms; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; SCD, subjective 
cognitive decline; SD, standard deviation; AD, Alzheimer’s disease; CDR-SB, Clinical Dementia Rating Scale 
Sum of Boxes; MMSE, Mini-Mental State Examination; FAQ, Functional Activities Questionnaire; ADAS-cog, 
Alzheimer’s Disease Assessment Scale-cognitive; pTau, phosphorylated Tau; tTau, total Tau.

Biomarker

Change in score, BM-positive, 
estimate (95% CI)

Change in score, BM-negative, 
estimate (95% CI)

Difference between change in score, 
BM-negative and BM-positive, 
estimate (95% CI)

ADNI BioFINDER ADNI BioFINDER ADNI BioFINDER

pTau/Aβ(1–42) –2.13
(–2.39 to –1.87)

–2.31
(–2.73 to –1.89)

–0.05
(–0.34 to 0.24)

–0.74
(–1.10 to –0.38)

–2.08
(–2.47 to –1.68)

–1.57
(–2.14 to –1.01)

tTau/Aβ(1–42) –2.13
(–2.39 to –1.88)

–2.28
(–2.69 to –1.86)

–0.04
(–0.33 to 0.25)

–0.77
(–1.12 to –0.41)

–2.10
(–2.49 to –1.71)

–1.51
(–2.07 to –0.95)

Aβ(1–42) –1.96
(–2.21 to –1.71)

–1.99
(–2.37 to –1.62)

–0.04
(–0.34 to 0.27)

–0.81
(–1.19 to –0.42)

–1.92
(–2.32 to –1.53)

–1.19
(–1.74 to –0.64)

pTau –2.23
(–2.53 to –1.94)

–1.99
(–2.49 to –1.49)

–0.43
(–0.69 to –0.18)

–1.16
(–1.48 to –0.84)

–1.80
(–2.20 to –1.40)

–0.83
(–1.44 to –0.22)

tTau –2.07
(–2.39 to –1.75)

–1.90
(–2.39 to –1.40)

–0.68
(–0.93 to –0.43)

–1.20
(–1.52 to –0.87)

–1.40
(–1.81 to –0.99)

–0.70
(–1.30 to –0.10)

Table 2. Prediction of clinical decline (24 months) assessed by MMSE scores, according to CSF biomarker 
status. Based on PET-optimised cut-offs for Aβ(1–42), pTau/Aβ(1–42) and tTau/Aβ(1–42). Analyses shown 
with adjustment for age, sex, years of education but without adjustment for APOEε4 status. Change in 
score calculated from baseline to 24 months in the ADNI MCI and BioFINDER MCS populations. MMSE, 
Mini-Mental State Examination; CSF, cerebrospinal fluid; BM, biomarker; CI, confidence interval; ADNI, 
Alzheimer’s Disease Neuroimaging Initiative; pTau, phosphorylated Tau; tTau, total Tau; PET, positron emission 
tomography; MCI, mild cognitive impairment; MCS, mild cognitive symptoms.
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greater change in MMSE score in BM-negative patients described above. Estimates for all covariates can be found 
in Supplementary Table S1. Additional analyses based on FAQ, CDR-SB (ADNI only) and ADAS-cog (ADNI 
only) clinical scores also showed good separation between BM-negative and BM-positive patients, indicating 
greater clinical decline among BM-positive patients (Supplementary Table S2; Supplementary Fig. S4). Sensitivity 
analyses, to evaluate the robustness of the data, show that risk of clinical decline was accurately predicted in the 
ADNI cohort even when using cut-offs derived from BioFINDER and adjusted to account for differences in 
pre-analytical handling in ADNI (Supplementary Table S3; Supplementary Fig. S5).

When comparing the performance of each biomarker for predicting risk of clinical decline, the Tau/Aβ(1–42) 
ratios were superior to single biomarkers, as demonstrated by the greater difference in MMSE scores between 
BM-negative and BM-positive patients, i.e. –2.10 for tTau/Aβ(1–42) versus –1.40 for tTau in ADNI (Table 2). 
When comparing the performance of different cut-offs, separation between MMSE scores for BM-negative 
and BM-positive patients was robust, and the PET-optimised cut-offs were not substantially outperformed by 
any of the other cut-offs analysed; findings were consistent for clinical scores CDR-SB, FAQ and ADAS-cog 
(Supplementary Figs. S1 and S2).

CSF biomarkers for prediction of conversion to dementia or AD. CSF biomarker status at baseline 
identified patients with a higher (BM-positive) versus lower (BM-negative) risk of conversion to dementia within 
6 years, as demonstrated by good separation on Kaplan-Meier curves (Fig. 2). HRs for conversion to dementia 
were highest for pTau/Aβ(1–42) and tTau/Aβ(1–42), and lowest for pTau and tTau (Table 3). Although HRs for 

Figure 1. Model-derived time-course plots of MMSE score (24 months) according to CSF biomarker status. 
Least square-means with SEs are presented for the ADNI MCI and BioFINDER MCS populations. ADNI 
(upper panel) cut-offs: pTau/Aβ(1–42), 0.025; tTau/Aβ(1–42), 0.27; Aβ(1–42), 977 pg/mL. BioFINDER (lower 
panel) cut-offs: pTau/Aβ(1–42), 0.022; tTau/Aβ(1–42), 0.26; Aβ(1–42), 1,100 pg/mL. pTau and tTau cut-offs of 
27 pg/mL and 300 pg/mL, respectively, were used in both cohorts. Analyses shown with adjustment for age, sex, 
years of education but without adjustment for APOEε4 status; number of patients in each biomarker group at 
baseline is presented. MMSE, Mini-Mental State Examination; CSF, cerebrospinal fluid; pTau, phosphorylated 
Tau; tTau, total Tau; ADNI, Alzheimer’s Disease Neuroimaging Initiative; BM–, biomarker-negative; BM + , 
biomarker-positive; SE, standard error; MCI, mild cognitive impairment; MCS, mild cognitive symptoms.
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conversion to all-cause dementia were lower in BioFINDER than in ADNI, exploration of conversion to AD 
dementia in BioFINDER showed larger HRs; the greatest differences were observed for pTau/Aβ(1–42) (HR 11.48 
versus 3.38) and tTau/Aβ(1–42) (HR 10.31 versus 3.38; Table 3).

When comparing the performance of different cut-offs across a grid, results were robust, and cut-offs derived 
in BioFINDER and adjusted for differences in pre-analytical handling procedure in ADNI showed similar results 
to those based on the PET-optimised cut-offs, for all clinical scores (Supplementary Fig. S3).

Contribution of single tau biomarkers when combined with biomarkers of amyloid status for 
the prediction of risk of clinical decline and conversion to dementia. Mixed-effects model esti-
mates of differences in clinical decline from baseline to 24 months, based on MMSE score, were greatest for 
patients who were positive for both biomarkers compared with patients who were negative for both biomark-
ers (reference) across all biomarkers in both ADNI and BioFINDER populations. When considering amyloid 

Figure 2. Kaplan-Meier curves for outcome all-cause dementia diagnosis within 6 years, according to CSF 
biomarker status. Data are presented for the ADNI MCI and BioFINDER MCS populations; number of patients 
in each biomarker group at each time point is presented. ADNI (upper panel) cut-offs: pTau/Aβ(1–42), 0.025; 
tTau/Aβ(1–42), 0.27; Aβ(1–42), 977 pg/mL. BioFINDER (lower panel) cut-offs: pTau/Aβ(1–42), 0.022; tTau/
Aβ(1–42), 0.26; Aβ(1–42), 1,100 pg/mL. pTau and tTau cut-offs of 27 pg/mL and 300 pg/mL, respectively, were 
used in both cohorts. CSF, cerebrospinal fluid; ADNI, Alzheimer’s Disease Neuroimaging Initiative; pTau, 
phosphorylated Tau; tTau, total Tau; BM–, biomarker-negative; BM + , biomarker-positive; MCI, mild cognitive 
impairment; MCS, mild cognitive symptoms.

Biomarker

Hazard ratio (95% CI)

ADNI BioFINDER

Dementia Dementia AD

pTau/Aβ(1–42) 4.76 (3.22–7.04) 3.38 (2.35–4.87) 11.48 (6.04–21.81)

tTau/Aβ(1–42) 5.20 (3.48–7.78) 3.38 (2.35–4.86) 10.31 (5.55–19.13)

Aβ(1–42) 4.41 (2.89–6.72) 2.63 (1.83–3.78) 6.00 (3.38–10.65)

pTau 2.73 (2.02–3.70) 1.94 (1.39–2.72) 3.86 (2.51–5.95)

tTau 2.12 (1.59–2.84) 1.67 (1.20–2.33) 3.00 (1.98–4.55)

Table 3. Hazard ratios (Cox proportional regression) for conversion to dementia or AD, by CSF biomarker 
status. Analyses shown with adjustment for age, sex, years of education, baseline MMSE score, baseline CDR-SB 
score (ADNI only), but without adjustment for APOEε4 status. Data presented for ADNI MCI and BioFINDER 
MCS populations. AD, Alzheimer’s disease; CSF, cerebrospinal fluid; CI, confidence interval; ADNI, Alzheimer’s 
Disease Neuroimaging Initiative; pTau, phosphorylated Tau; tTau, total Tau; MMSE, Mini-Mental State 
Examination; CDR-SB, Clinical Dementia Rating Sum of Boxes; MCI, mild cognitive impairment; MCS, mild 
cognitive symptoms.
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status defined by Aβ(1–42), the mixed-effects model estimate of the difference between Aβ(1–42) + |pTau + and 
Aβ(1–42)–|pTau– was –2.72 in ADNI and –1.46 in BioFINDER, with clear separation according to biomarker 
status demonstrated in model-derived time-course plots (Table 4; Fig. 3A, C). In both cases, the contribution 
of pTau was significant, with PLRT ≤ 0.05 (Table 4). The contribution of pTau was also significant when added to 
amyloid status defined by pTau/Aβ(1–42) or visual PET read-out in the ADNI population, but not in the smaller 
BioFINDER population (Table 4; Supplementary Figs. S6 and S7). Results were also similar for the contribution 
of tTau (Table 4).

Time-to-event modelling, considering amyloid status defined by Aβ(1–42) in combination with pTau, showed 
clear separation according to biomarker status for analysis of conversion to all-cause dementia in ADNI, and to a 
lesser extent in BioFINDER (Fig. 3B, D). Corresponding HRs were consistently highest for amyloid + |Tau + com-
pared with the reference amyloid–|Tau– and confirmed the contribution of tau for predicting conversion to 
dementia (Table 4).

Discussion
Our findings show that Aβ(1–42), pTau and tTau are promising CSF biomarkers for predicting the risk of clinical 
decline and conversion to AD or dementia in patients with MCI/MCS, using novel Elecsys immunoassays. Tau/
Aβ(1–42) ratios demonstrated superior performance to the single CSF biomarkers Aβ(1–42), pTau and tTau. 
Cut-off values for single tau biomarkers were also derived and validated.

The ability to diagnose AD early in the disease course and identify disease progression is of utmost importance 
for planning patient treatment and care. Robust biomarkers that can accurately assess clinical decline are therefore 
needed to support clinical assessment of patients in practice and the evaluation of potentially disease-modifying 
drugs in trials. This study demonstrates that classification of MCI/MCS patients as BM-positive or BM-negative 
according to CSF biomarkers pTau/Aβ(1–42), tTau/Aβ(1–42), Aβ(1–42), pTau or tTau can distinguish between 
those who are at higher versus lower risk of clinical decline, based on the change in clinical scores over 24 months. 
In addition, time-to-event analyses show that these biomarkers can predict the risk of conversion to dementia 
within 6 years according to BM-negative versus BM-positive status at baseline. Importantly, we validated the 

Biomarker

Mixed-model estimate (95% CI) of difference in clinical 
decline (24 months) versus reference, BM–/BM–

LRT P value

Hazard ratio estimate (95% CI) for outcome 
dementia within 6 years

LRT P valueBM1–|BM2 + BM1 + |BM2– BM1 + |BM2 + BM1–|BM2+ BM1+|BM2– BM1+|BM2+

ADNI

Aβ(1–42)|pTau –0.60
(–1.38 to 0.19)

–1.19
(–1.69 to –0.69)

–2.72
(–3.20 to –2.24) <0.0001a 2.05

(0.88 to 4.76)
3.46
(1.99 to 6.01)

6.61
(3.99 to 10.96) 0.0001a

pTau/Aβ(1–42)|pTau 0.02
(–1.07 to 1.11)

–1.34
(–1.90 to –0.79)

–2.40
(–2.84 to –1.96) 0.001b 0.46

(0.06 to 3.36)
3.56
(2.19 to 5.80)

5.02
(3.34 to 7.54) 0.117b

Visual PET|pTau 0.02
(–0.87 to 0.92)

–0.82
(–1.38 to –0.26)

–2.33
(–2.81 to –1.85) <0.0001c 0.77

(0.10 to 5.89)
2.97
(1.46 to 6.04)

7.25
(4.02 to 13.11) 0.002c

Aβ(1–42)|tTau –0.53
(–1.30 to 0.25)

–1.53
(–2.01 to –1.05)

–2.60
(–3.10 to –2.10) <0.0001d 1.73

(0.72 to 4.14)
3.94
(2.34 to 6.62)

6.09
(3.69 to 10.07) 0.013d

tTau/Aβ(1–42)|tTau 0.11
(–0.86 to 1.08)

–1.73
(–2.23 to –1.23)

–2.35
(–2.81 to –1.89) 0.001e 0.44

(0.06 to 3.28)
4.70
(2.98 to 7.39)

5.19
(3.39 to 7.96) 0.551e

Visual PET|tTau –0.07
(–0.91 to 0.76)

–1.00
(–1.51 to –0.49)

–2.54
(–3.05 to –2.03) <0.0001f 0.76

(0.10 to 5.88)
3.86
(2.03 to 7.35)

7.53
(4.10 to 13.82) 0.012 f

BioFINDER

Aβ(1–42)|pTau –0.18
(–1.45 to 1.10)

–0.99
(–1.65 to –0.33)

–1.46
(–2.15 to –0.76) 0.002a 2.17

(1.06 to 4.45)
2.71
(1.72 to 4.27)

3.50
(2.25 to 5.45) 0.060a

pTau/Aβ(1–42)|pTau 0.26
(–1.40 to 1.93)

–1.75
(–2.53 to –0.98)

–1.44
(–2.09 to –0.78) 0.100b 1.12

(0.38 to 3.27)
3.22
(1.82 to 5.71)

3.90
(2.39 to 6.35) 0.926b

Visual PET|pTau –0.79
(–2.20 to 0.63)

–2.24
(–3.19 to –1.30)

–1.74
(–2.51 to –0.96) 0.058c 1.12

(0.35 to 3.65)
3.57
(2.27 to 5.63)

3.33
(2.23 to 4.97) 0.743c

Aβ(1–42)|tTau –0.19
(–1.32 to 0.94)

–1.05
(–1.71 to –0.38)

–1.42
(–2.13 to –0.71) 0.002d 1.88

(0.95 to 3.73)
2.85
(1.80 to 4.50)

3.40
(2.15 to 5.37) 0.146d

tTau/Aβ(1–42)|tTau 0.08
(–1.26 to 1.41)

–1.71
(–2.47 to –0.94)

–1.37
(–2.03 to –0.71) 0.110e 1.36

(0.54 to 3.42)
3.36
(1.87 to 6.04)

4.04
(2.46 to 6.65) 0.768e

Visual PET|tTau –0.76
(–2.05 to 0.53)

–2.24
(–3.20 to –1.28)

–1.78
(–2.55 to –1.00) 0.056f 1.10

(0.43 to 2.82)
3.73
(2.38 to 5.84)

3.24
(2.15 to 4.89) 0.623 f

Table 4. Contribution of tau biomarkers to prediction of clinical decline assessed by MMSE score (24 months). 
Analyses shown with adjustment for age, sex, years of education but without adjustment for APOEε4 status. 
Hazard ratio data also adjusted for baseline MMSE score (ADNI and BioFINDER) and baseline CDR-SB score 
(ADNI only). LRTs were used to assess the contribution of tau when combined with Aβ(1–42), Tau/Aβ(1–42) 
ratios or amyloid-PET, based on comparison of different four-categorical mixed models and Cox regression 
models. Data presented for ADNI MCI and BioFINDER MCS populations. LRT comparison: aAβ(1–42) versus 
Aβ(1–42)|pTau; bpTau/Aβ(1–42) versus pTau/Aβ(1–42)|pTau; cVisual PET versus visual PET|pTau; dAβ(1–42) 
versus Aβ(1–42)|tTau; etTau/Aβ(1–42) versus tTau/Aβ(1–42)|tTau; fVisual PET versus visual PET|tTau. MMSE, 
Mini-Mental State Examination; CI, confidence interval; BM–, biomarker-negative; BM + , biomarker-positive; 
LRT, likelihood ratio test; ADNI, Alzheimer’s Disease Neuroimaging Initiative; pTau, phosphorylated Tau; PET, 
positron emission tomography; tTau, total Tau; CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; MCI, 
mild cognitive impairment; MCS, mild cognitive symptoms.
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ability to predict a patient’s risk of clinical decline using pTau/Aβ(1–42), tTau/Aβ(1–42) and Aβ(1–42) cut-offs 
previously derived for PET concordance.

Previous studies of CSF biomarkers Aβ(1–42), pTau and tTau have reported encouraging evidence for their 
utility as predictors of clinical decline11,26,27. In our comprehensive evaluation of five CSF biomarkers across four 
clinical scoring algorithms, we demonstrate the consistently superior performance of the Tau/Aβ(1–42) ratios 
compared with single biomarkers for prediction of clinical decline and conversion to dementia. Specifically, pTau/
Aβ(1–42) demonstrated the best performance for prediction of clinical decline in MCI patients over 24 months. 
These data suggest that Tau/Aβ(1–42) ratios are the most sensitive and specific of the AD CSF biomarkers currently 
under investigation, a finding supported by previous studies10,12,28. Superior performance with both pTau/Aβ(1–
42) and tTau/Aβ(1–42) compared with Aβ(1–42) observed in our study may relate to the extended degree of neu-
ronal dysfunction and death, induced by tau hyper-phosphorylation and aggregation29,30. It could also be linked to 
improved amyloid-PET-concordance of Tau/Aβ(1–42) ratios compared with Aβ(1–42), pTau and tTau31–33. This 
seems to reflect AD pathology, as amyloid-PET imaging mostly detects neuritic plaques, containing tau and Aβ29.

Figure 3. Evaluation of pTau and Aβ(1–42) for predicting clinical decline and conversion to all-cause dementia. 
Model-derived time-course plot (least square-means with SE) of clinical decline assessed by change in MMSE 
score from baseline to 24 months in the (A) ADNI MCI and (c) BioFINDER MCS populations; adjustment for age, 
sex, years of education but without adjustment for APOEε4 status; number of patients in each biomarker group 
at baseline is presented. Kaplan-Meier curves of outcome dementia diagnosis within 6 years in the (B) ADNI 
MCI and (D) BioFINDER MCS populations; number of patients in each biomarker group at each time point 
is presented. pTau, phosphorylated Tau; MMSE, Mini-Mental State Examination; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative; SE, standard error; MCI, mild cognitive impairment; MCS, mild cognitive symptoms.
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For the first time, we report cut-offs for single pTau and tTau CSF biomarkers; these cut-offs were derived 
using the ADNI population and then validated in BioFINDER. Our approach of optimising CSF biomarker 
cut-offs for concordance with amyloid-PET status, as previously used for derivation of Aβ(1–42) and Tau/Aβ(1–
42) ratio cut-offs, is therefore newly validated as a method for determining cut-offs for clinical decline analyses. 
Of note, the optimal cut-offs for pTau and tTau were similar in both cohorts even though CSF was collected using 
different protocols and the Elecsys analyses were performed in different laboratories, demonstrating the robust-
ness and transferability of data generated with the Elecsys pTau and tTau CSF assays.

Analyses conducted based on tau status added to an Aβ assessment, such as Aβ(1–42), Tau/Aβ(1–42) or visual PET, 
may closely reflect clinical practice and provide insight into performance differences between biomarkers34. Using the 
newly established single tau cut-offs, we showed that the benefit of tau in addition to Aβ(1–42) is consistently significant 
across two study populations. However, the added benefit of tau in addition to Tau/Aβ(1–42) or PET was less compel-
ling. This may be because Aβ and combined Aβ/tau pathology are strong predictors of clinical decline and conversion 
to AD, whereas tau is associated with other pathologies, and is therefore not an ideal single marker for the prediction of 
specific dementia types. Further, the effect of tau in addition to Tau/Aβ(1–42) may be minimal because tau is already 
present in the ratio. Small sample sizes limit the conclusions that can be drawn. Our findings are, however, consistent 
with other studies where tau showed clinical value in combination with Aβ(1–42)34, and Aβ(1–42) only predicted 
conversion to AD dementia when combined with pTau as a ratio10,35. Such findings are consistent with the hypothesis 
that as tau pathology emerges with pre-existing amyloid pathology, the overall rate of disease progression increases35.

Notably, all biomarkers predicted progression more strongly in ADNI compared with BioFINDER, which may 
reflect the smaller sample size and differences in population characteristics. ADNI was developed to simulate an 
AD clinical trial, which is reflected in the enrolment criteria and may have resulted in a more select AD popula-
tion compared with BioFINDER, by including fewer patients with other forms of dementia or any significant neu-
rological disease other than AD. This may also account for the stronger performance of the CSF biomarkers when 
used to predict conversion to AD, rather than all-cause dementia, in BioFINDER. In BioFINDER, although most 
dementia cases are due to AD, many patients developed other forms of dementia, consistent with post-mortem 
studies comprising patients with MCI at baseline36. Similarly, although AD may be the primary diagnosis in 
ADNI patients, many patients had more than one co-pathology such as Lewy body pathology and TDP-43 depos-
its (observed in approximately 42% and 21% of patients, respectively)37,38.

Strengths of this study include the comprehensive analysis of samples from two large, international cohorts, 
including many follow-up visits, thus improving the reliability of the results. The Elecsys immunoassays have an 
excellent analytical performance, therefore enabling accurate and precise measurement of CSF biomarker con-
centrations between and within laboratories. This is demonstrated in both the consistency of cut-offs for pTau and 
tTau, when derived from CSF samples collected from two different cohorts and analysed at different laboratories,  
and the ability of Tau/Aβ(1–42) ratios to accurately predict risk of cognitive decline in one cohort (ADNI) even 
when using cut-offs established in another cohort (BioFINDER). Our approach of optimising CSF Tau/Aβ(1–42) 
ratio cut-offs for concordance with amyloid-PET status also contributed to the consistency of these analyses. 
Findings were also consistent between both continuous clinical scores as outcomes and time-to-event analyses.

This study provides valuable data supporting the potential benefits of CSF biomarker assessment as a robust 
and accurate alternative to imaging techniques. Advantages of CSF biomarkers over imaging techniques include 
lower cost and the opportunity to detect other pathologies by the same procedure, for example analysing other CSF 
components such as neurofilament light chain and neurogranin. Plasma-based assays are also in development, and 
could provide a less invasive means of assessing patients with cognitive symptoms and suspected AD in primary care 
settings39. However, measurement of AD biomarkers, e.g. tau protein and Aβ(1–42), in blood samples may face ana-
lytical challenges due to their low abundance relative to the very high levels of plasma proteins, resulting in matrix 
interference, as well as possible biological confounders such as expression of these proteins in peripheral tissue with 
release into plasma40. Greater utilisation of CSF biomarkers in clinical trials could aid identification of appropriate 
patients most likely to benefit from potentially disease-modifying drugs and help to assess their efficacy11,13,41. Elecsys 
CSF assays also offer the benefit of minimising potential inter-observer variability that can occur with imaging.

Data availability
ADNI data are available at http://adni.loni.usc.edu/data-samples/access-data/. For the BioFINDER study, 
anonymised data is available upon request from any qualified investigator for the sole purpose of replicating 
procedures and results presented in the article, subject to data transfer aligning with EU legislation on the General 
Data Protection Regulation.
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